Growth, Thermal and Spectral Properties of Er3+-Doped and Er3+/Yb3+-Codoped Li3Ba2La3(WO4)8 Crystals

نویسندگان

  • Bin Xiao
  • Zhoubin Lin
  • Lizhen Zhang
  • Yisheng Huang
  • Guofu Wang
چکیده

This paper reports the growth and spectral properties of Er(3+)-doped and Er(3+)/Yb(3+)-codoped Li(3)Ba(2)La(3)(WO(4))(8) crystals. The Er(3+): Li(3)Ba(2)La(3)(WO(4))(8) crystal with dimensions of 56 mm × 28 mm × 9 mm and Er(3+)/Yb(3+): Li(3)Ba(2)La(3)(WO(4))(8) crystal with dimensions of 52 mm × 24 mm × 8 mm were obtained by the top-seeded solution growth (TSSG) method. Thermal expansion coefficients and thermal conductivity of both crystals were measured. The spectroscopic characterizations of both crystals were investigated. The spectroscopic analysis reveals that the Er(3+)/Yb(3+): Li(3)Ba(2)La(3)(WO(4))(8) crystal has much better optical properties than the Er(3+): Li(3)Ba(2)La(3)(WO(4))(8) crystal, thus it may become a potential candidate for solid-state laser gain medium material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lu3+/Yb3+ and Lu3+/Er3+ Co-doped Antimony Selenide Nanomaterials: Synthesis, Characterization, Electrical, Thermoelectrical and Optical Properties

Lu3+/Yb3+ and Lu3+/Er3+ Co-doped Sb2Se3 nanomaterials were synthesized by a Co-reduction method in hydrothermal condition. Powder XRD patterns indicate that the LnxLn′xSb2-2xSe3 Ln: Lu3+/Yb3+ and Lu3+/Er3+ crystals (x= 0.00-0.04) are isostructural with Sb2Se3. The cell parameters were increased for compounds upon increasing the dopant content (x). SEM and TEM images show that Co-doping of Lu3+/...

متن کامل

Lu3+/Yb3+ and Lu3+/Er3+ Co-doped Antimony Selenide Nanomaterials: Synthesis, Characterization, Electrical, Thermoelectrical and Optical Properties

Lu3+/Yb3+ and Lu3+/Er3+ Co-doped Sb2Se3 nanomaterials were synthesized by a Co-reduction method in hydrothermal condition. Powder XRD patterns indicate that the LnxLn′xSb2-2xSe3 Ln: Lu3+/Yb3+ and Lu3+/Er3+ crystals (x= 0.00-0.04) are isostructural with Sb2Se3. The cell parameters were increased for compounds upon increasing the dopant content (x). SEM and TEM images show that Co-doping of Lu3+/...

متن کامل

Lu3+/Yb3+ and Lu3+/Er3+ co-doped antimony selenide nanomaterials: synthesis, characterization, and electrical, thermoelectrical, and optical properties

Lu3+/Yb3+ and Lu3+/Er3+ co-doped Sb2Se3 nanomaterials were synthesized by co-reduction method in hydrothermal condition. Powder X-ray diffraction patterns indicate that the LnxLn'xSb2-2xSe3 Ln: Lu3+/Yb3+ and Lu3+/Er3+ crystals (x = 0.00 - 0.04) are isostructural with Sb2Se3. The cell parameters were increased for compounds upon increasing the dopant content (x). Scanning electron microscopy and...

متن کامل

Planar Er:Yb glass ion exchanged waveguide laser - Electronics Letters

Introduction: Er3+:Yb3+ codoping has become an effective method for producing short, efficient lasers and amplifiers in the long haul telecommunications wavelength range. Ytterbium codoping increases the pump absorption near 980nm and efficient energy transfer between the Yb’’ and the Er3+ ions enables the operation of centimetre long lasers with low Er” concentrations. This mechanism was first...

متن کامل

High-gain polymer optical waveguide amplifiers based on core-shell NaYF4/NaLuF4: Yb3+, Er3+ NPs-PMMA covalent-linking nanocomposites

Waveguide amplifiers have always been significant key components for optical communication. Unfortunately, the low concentration of rare earth ions doped in the host material and the inadequate optimization of the waveguide structure have been the common bottleneck limitations. Here, a novel material, NaYF4/NaLuF4: 20% Yb3+, 2% Er3+ nanoparticle-Polymeric Methyl Methacrylate covalent-linking na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012